
HOMOLOGICAL INDEPENDENCE OF INFINITE SYZYGIES
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Abstract. We consider modules that appear as syzygies of acyclic complexes of flat modules
and examine a certain condition on pairs of such modules, that generalizes the vanishing of
Tate homology. If this condition is satisfied for two modules over a commutative ring, then (a)
the tensor product of the two modules is also a syzygy of an acyclic complex of flat modules
and (b) the syzygy modules of the tensor product of the corresponding acyclic complexes of
flat modules is an acyclic complex of flat modules as well, whose syzygies can be expressed in
terms of the syzygies of the factor complexes. We also examine the analogous (dual) case of
homomorphism groups of infinite syzygies.
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0. Introduction

In homological algebra, the notion of a (projective, injective or flat) resolution of a module
refers to a complex, which is bounded on one side and has certain additional properties.
In several applications of the theory, one faces problems that require the use of complexes
which are unbounded on both sides. The appropriate analogues of resolutions in this setting
were first studied in [11] and [1]. In an ordinary projective resolution of a module M , the
syzygies (ΩnM)n appear as kernels of higher differentials. On the other hand, if M is the
kernel of an acyclic unbounded complex of projective modules, then not only does M have
its own sequence of syzygy modules, but for all positive n the module M is itself the n-th
syzygy of a suitable module K−n (and K−n = ΩiK−n−i for all n, i > 0). This is an algebraic
analogue of the notion of an infinite loop space in topology. Modules that appear as kernels
of acyclic unbounded complexes have certain unexpected (and perhaps surprising) properties.
For example, if the kernels of an acyclic complex of projective modules are all flat, then they
are necessarily projective (and hence the complex is contractible); for a proof of that result,
the reader is referred to [3, Theorem 2.5], [10, Theorem 8.6] and [5, Proposition 7.6]. As
another example, we note that the kernels of any acyclic complex of injective modules are
necessarily cotorsion; cf. [12, Corollary 5.9] and [2, Theorem 4.1(2)]. We also note that the
kernels of certain unbounded acyclic complexes of projective, injective and flat modules form
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the building blocks of Gorenstein homological algebra; see [7] and [8] for the definitions of
Gorenstein projective, Gorenstein injective and Gorenstein flat modules.

It may be of interest to examine the behaviour of modules that appear as kernels of acyclic
complexes as above with respect to standard module operations, such as the formation of
tensor products and groups of homomorphisms. Assuming that the ground ring R is commu-
tative, we may consider two modules M,N that appear as kernels of acyclic complexes of flat
modules X,Y respectively and ask:

Is the tensor product M ⊗N also the kernel of an acyclic complex of flat modules?

There are well-known spectral sequence methods that may be used in order to analyse the
acyclicity of the tensor product complex X ⊗ Y (cf. [4]). Then, one may also ask:

Assuming that the complex X ⊗ Y is acyclic, how can one compute the kernels of its differen-
tials, in terms of the kernels of the differentials of X and Y ?

We examine a certain (homological independence) condition on the two complexes X and Y
that (a) enables us to answer affirmatively the first question above, using the construction
described in [6], (b) implies the acyclicity of the tensor product complex X ⊗ Y and (c) en-
ables us to express the kernels of the complex X ⊗ Y as extensions, that involve the kernels
of the complexes X and Y . These results are presented in Theorem 1.10 and Corollary 2.7.
We note that the homological independence condition mentioned above is actually a property
characterizing the pair (M,N), i.e. it does not depend on the choice of the acyclic complexes
of flat modules X and Y , wherein M and N appear as kernels (cf. Proposition 2.3). If either
one of the two modules is Gorenstein projective, then that condition amounts to the vanishing

of the Tate homology groups T̂or
R

∗ (M,N).
An analogous (dual) approach can be followed regarding groups of homomorphisms. Let

M,N be two modules and assume that M is a kernel of an acyclic complex of projective
modules X and N is a kernel of an acyclic complex of injective modules Y . Then, we describe
another homological independence condition on the two complexes X and Y (which is really
a property of the pair (M,N) as before and generalizes the vanishing of Tate cohomology)
and show that under its presence the following hold: (a) if the ring R is commutative, then
the module HomR(M,N) is a kernel of an acyclic complex of injective modules, (b) the Hom
complex HomR(X,Y ) is acyclic and (c) the kernels of the complex HomR(X,Y ) may be
expressed as certain extensions involving the kernels of the complexes X and Y . We note that
the acyclicity of Hom complexes has been extensively studied, being related to a notion of
orthogonality in the homotopy category of the ring; see, for example, [9, §3].

Notations and terminology. Unless otherwise specified, all modules considered in this paper
are left modules over a fixed associative unital ring R. If M is a right R-module and N is a
(left) R-module, we denote by M⊗N the tensor product M⊗RN . If N,N ′ are two R-modules
then we denote by [N,N ′] the group of homomorphisms HomR(N,N ′) and adopt a similar
notation for the additive maps that are induced by linear maps in the first, the second or both
variables.

1. The syzygies of a tensor product of flat complexes

In this section, we examine the tensor product of two acyclic complexes of flat modules.
Under certain conditions (which imply that the tensor product complex is acyclic), we compute
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the syzygy groups of that tensor product complex, in terms of the syzygies of the factors.

I. The tensor product of two differential modules. A differential R-module is
a pair (X, ∂X), where X is a Z-graded R-module and ∂X : X −→ X is the differential, i.e.
a square zero linear endomorphism of X, which is graded of degree −1. We view X as the
direct sum of its homogeneous components and say that the differential module (X, ∂X) if flat
(resp. projective) if this is the case for the underlying R-module X. We denote BX = im ∂X
and ZX = ker ∂X ; these are graded submodules of X. We also let ıX : BX ↪→ X and
X : ZX ↪→ X be the inclusion maps and denote by θX : X −→ BX the surjective linear map
induced by ∂X (so that ıX ◦ θX = ∂X). Since BX ⊆ ZX , we may define the homology module
HX = ZX/BX . We say that the differential R-module (X, ∂X) is acyclic if HX = 0, i.e. if
BX = ZX . The differential R-modules are the objects of a category ∆(R), whose morphisms
are the homogeneous (i.e. graded of degree zero) linear maps that commute with the respective
differentials.

The tensor product of Z-graded modules induces a bifunctor

∆(Rop)×∆(R) −→ ∆(Z).
If (X, ∂X) is a differential right R-module and (Y, ∂Y ) a differential (left) R-module, then the
differential abelian group (X⊗Y, ∂X⊗Y ) is defined as follows: The graded abelian group X⊗Y
consists in degree n of

⊕
i+j=n Xi⊗ Yj and the differential ∂X⊗Y is given by the additive map

∂X ⊗ 1 + 1⊗ ∂Y : X ⊗ Y −→ X ⊗ Y.

We adopt the usual sign convention for the tensor product of two graded maps1, so that for
any homogeneous element x ∈ X of degree n and any y ∈ Y the tensor product differential
∂X⊗Y maps x⊗ y onto ∂X(x)⊗ y + (−1)nx⊗ ∂Y (y).

Lemma 1.1. Let (X, ∂X) be a differential right R-module and (Y, ∂Y ) a differential R-module.
Then, the additive maps

X ⊗ ıY : ZX ⊗BY −→ X ⊗ Y and ıX ⊗ Y : BX ⊗ ZY −→ X ⊗ Y

factor through the subgroup BX⊗Y ⊆ X ⊗ Y .

Proof. If x ∈ ZX is a homogeneous element of degree n and y ∈ BY , then y = ∂Y (y
′) for

some y′ ∈ Y and hence x ⊗ y = x ⊗ ∂Y (y
′) = (−1)n∂X⊗Y (x ⊗ y′) ∈ X ⊗ Y ; this proves that

im (X ⊗ ıY ) ⊆ BX⊗Y . Similarly, if x ∈ BX and y ∈ ZY , then x = ∂X(x
′) for some x′ ∈ X and

hence x⊗ y = ∂X(x
′)⊗ y = ∂X⊗Y (x

′ ⊗ y) ∈ X ⊗ Y ; this proves that im (ıX ⊗ Y ) ⊆ BX⊗Y . �
Lemma 1.2. Let (X, ∂X) be a differential right R-module, (Y, ∂Y ) a differential R-module and
assume that one of them is both acyclic and flat.

(i) If TorR1 (ZX , ZY ) = 0, then the additive map X ⊗ Y : ZX ⊗ ZY −→ X ⊗ Y is injective.
(ii) If TorR1 (BX , BY ) = 0, then the additive map ıX ⊗ ıY : BX ⊗BY −→ X ⊗ Y is injective.

Proof. We assume that (Y, ∂Y ) is acyclic and Y is flat. (Symmetric arguments to the ones that
follow apply if we assume that (X, ∂X) is acyclic and X is flat.) We note that the surjective
linear map θY : Y −→ BY induces an isomorphism of R-modules coker Y = Y/ZY ≃ BY .

(i) We express the additive map X ⊗ Y as the composition

ZX ⊗ ZY
1⊗ȷY−→ ZX ⊗ Y

ȷX⊗1−→ X ⊗ Y.

1Whenever X
f−→ X ′ g−→ X ′′ and Y

h−→ Y ′ k−→ Y ′′ are graded linear maps of degrees f̃ , g̃, h̃ and k̃

respectively, then (g ⊗ k) ◦ (f ⊗ h) = (−1)k̃f̃ (g ◦ f)⊗ (k ◦ h) : X ⊗ Y −→ X ′′ ⊗ Y ′′.
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Then, the result follows since both of the additive maps 1⊗ Y and X ⊗ 1 are injective: The
injectivity of 1 ⊗ Y follows since TorR1 (ZX , coker Y ) ≃ TorR1 (ZX , BY ) = TorR1 (ZX , ZY ) = 0,
whereas the injectivity of X ⊗ 1 follows from the flatness of Y .

(ii) We express the additive map ıX ⊗ ıY as the composition

BX ⊗BY
1⊗ıY−→ BX ⊗ Y

ıX⊗1−→ X ⊗ Y.

Then, the result follows since both of the additive maps 1⊗ ıY and ıX ⊗ 1 are injective: The
injectivity of 1⊗ ıY follows since TorR1 (BX , coker ıY ) = TorR1 (BX , coker Y ) ≃ TorR1 (BX , BY ) =
0, whereas the injectivity of ıX ⊗ 1 follows from the flatness of Y . �
Corollary 1.3. Let (X, ∂X) be a differential right R-module, (Y, ∂Y ) a differential R-module
and assume that one of them is acyclic.

(i) There is a unique homogeneous additive map κ : ZX ⊗ZY −→ BX⊗Y , which is such that

the composition ZX ⊗ ZY
κ−→ BX⊗Y

ıX⊗Y−→ X ⊗ Y is equal to X ⊗ Y : ZX ⊗ ZY −→ X ⊗ Y .
Any elementary tensor x⊗ y ∈ ZX ⊗ ZY is mapped by κ onto x⊗ y ∈ BX⊗Y ⊆ X ⊗ Y .
(ii) If one of the two differential modules is both acyclic and flat and TorR1 (ZX , ZY ) = 0,

then κ is injective.

Proof. Assertion (i) follows from Lemma 1.1. Since both ıX⊗Y and the composition ıX⊗Y ◦κ =
X ⊗ Y are homogeneous, we conclude that κ is homogeneous as well. Finally, Lemma 1.2(i)
proves assertion (ii). �

We note that for any differential right R-module (X, ∂X) and any differential R-module (Y, ∂Y )
we have an inclusion

ZX⊗Y = ker
(
X ⊗ Y

∂X⊗Y−→ X ⊗ Y
)
⊆ ker

(
X ⊗ Y

∂X⊗∂Y−→ X ⊗ Y
)
.

Indeed, if an element ξ ∈ X ⊗ Y is such that ∂X⊗Y ξ = 0, then (∂X ⊗ 1)ξ + (1⊗ ∂Y )ξ = 0 and
hence, applying ∂X⊗1 to both sides, we conclude that (∂X⊗∂Y )ξ = 0. Since the additive map
θX⊗Y : X ⊗ Y −→ BX⊗Y induces an isomorphism (X ⊗ Y )/ZX⊗Y ≃ BX⊗Y , it follows that we

may factor ∂X ⊗ ∂Y : X ⊗ Y −→ X ⊗ Y as the composition X ⊗ Y
θX⊗Y−→ BX⊗Y

l−→ X ⊗ Y for
a unique additive map l : BX⊗Y −→ X ⊗ Y . The map θX⊗Y being surjective, it is clear that

im l = im (∂X⊗∂Y ). Since ∂X⊗∂Y factors as the compositionX⊗Y θX⊗θY−→ BX⊗BY
ıX⊗ıY−→ X⊗Y

and θX ⊗ θY is surjective, we finally conclude that im l = im
(
BX ⊗BY

ıX⊗ıY−→ X ⊗ Y
)
.

Corollary 1.4. Let (X, ∂X) be a differential right R-module, (Y, ∂Y ) a differential R-module
and assume that one of them is both acyclic and flat. If TorR1 (BX , BY ) = 0, then there exists
a unique surjective additive map λ : BX⊗Y −→ BX ⊗BY , which is such that the composition

X ⊗ Y
θX⊗Y−→ BX⊗Y

λ−→ BX ⊗BY
ıX⊗ıY−→ X ⊗ Y

coincides with the additive map ∂X ⊗ ∂Y : X ⊗ Y −→ X ⊗ Y . The map λ is graded of degree
−1; it maps any element ξ ∈ BX⊗Y onto (∂X ⊗ 1)ξ = −(1⊗ ∂Y )ξ ∈ BX ⊗BY ⊆ X ⊗ Y .

Proof. Since ıX ⊗ ıY is injective (cf. Lemma 1.2(ii)), the map l in the discussion above can

be expressed as the composition BX⊗Y
λ−→ BX ⊗ BY

ıX⊗ıY−→ X ⊗ Y for a unique (surjective)
additive map λ. The map λ is graded of degree −1, since ıX ⊗ ıY is homogeneous, θX⊗Y is
graded of degree −1 and the composition (ıX ⊗ ıY ) ◦ λ ◦ θX⊗Y = ∂X ⊗ ∂Y is graded of degree
−2. Finally, for any ξ ∈ BX⊗Y we may write ξ = ∂X⊗Y η for a suitable η ∈ X ⊗ Y and then
compute λ(ξ) = (∂X ⊗ ∂Y )η = (∂X ⊗ 1)(∂X ⊗ 1 + 1⊗ ∂Y )η = (∂X ⊗ 1)ξ. Since ∂X⊗Y vanishes
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on BX⊗Y , it is clear that (∂X ⊗ 1)ξ = −(1⊗ ∂Y )ξ. �

In order to compute the kernel of the map λ defined above and obtain conditions that imply
the acyclicity of the tensor product of two differential modules, we need the following couple
of simple facts.

Lemma 1.5. Let (X, ∂X) be a differential right R-module, (Y, ∂Y ) a differential R-module and
assume that one of them is both acyclic and flat. If TorR1 (BX , BY ) = 0, then

ker
(
X ⊗ Y

∂X⊗∂Y−→ X ⊗ Y
)
= im

(
ZX ⊗ Y

ȷX⊗1−→ X ⊗ Y
)
+ im

(
X ⊗ ZY

1⊗ȷY−→ X ⊗ Y
)
.

Proof. The additive map ∂X⊗∂Y factors as the composition X⊗Y θX⊗θY−→ BX⊗BY
ıX⊗ıY−→ X⊗Y

and ıX⊗ıY is injective (cf. Lemma 1.2(ii)). It follows that ker (∂X⊗∂Y ) = ker (θX⊗θY ). Since
the linear maps θX and θY induce isomorphisms X/ZX ≃ BX and Y/ZY ≃ BY respectively,
the identification of the subgroup ker (θX ⊗ θY ) as claimed is a well-known consequence of the
right exactness of the tensor product. �
Lemma 1.6. Let (X, ∂X) be a differential right R-module and (Y, ∂Y ) a differential R-module,
such that TorR1 (BX , BY ) = 0. Then,

im
(
ZX ⊗ Y

ȷX⊗1−→ X ⊗ Y
)
∩ im

(
X ⊗ ZY

1⊗ȷY−→ X ⊗ Y
)
= im

(
ZX ⊗ ZY

ȷX⊗ȷY−→ X ⊗ Y
)
.

Proof. The surjective linear map θY : Y −→ BY induces an isomorphism coker Y = Y/ZY ≃
BY and hence the group TorR1 (BX , coker Y ) ≃ TorR1 (BX , BY ) is trivial. We therefore conclude
that the additive map 1⊗ Y : BX ⊗ ZY −→ BX ⊗ Y is injective. Then, the result follows by
inspecting the commutative diagram

ZX ⊗ ZY
ȷX⊗1−→ X ⊗ ZY

θX⊗1−→ BX ⊗ ZY −→ 0
↓ 1⊗ȷY ↓ 1⊗ȷY ↓ 1⊗ȷY

ZX ⊗ Y
ȷX⊗1−→ X ⊗ Y

θX⊗1−→ BX ⊗ Y −→ 0

whose rows are exact. �
Proposition 1.7. Let (X, ∂X) be a differential right R-module and (Y, ∂Y ) a differential R-
module. We assume that one of them is both acyclic and flat and TorR1 (BX , BY ) = 0.
(i) There exists an exact sequence of graded abelian groups

ZX ⊗ ZY
κ−→ BX⊗Y

λ−→ BX ⊗BY −→ 0.

The map κ is homogeneous and maps any elementary tensor x⊗ y ∈ ZX ⊗ ZY onto x⊗ y ∈
BX⊗Y ⊆ X ⊗ Y , whereas the map λ is graded of degree −1 and maps any element ξ ∈ BX⊗Y

onto (∂X ⊗ 1)ξ = −(1⊗ ∂Y )ξ ∈ BX ⊗BY ⊆ X ⊗ Y .
(ii) If we also have TorR1 (ZX , ZY ) = 0, then the map κ in (i) above is injective.
(iii) If both differential modules are acyclic, then (X ⊗ Y, ∂X⊗Y ) is acyclic as well.

Proof. (i) Since one of the two differential modules is both acyclic and flat and TorR1 (BX , BY ) =
0, the existence of κ and λ (and the surjectivity of λ) follows from Corollary 1.3(i) and
Corollary 1.4 respectively. It only remains to show that imκ = kerλ.
In view of Lemma 1.2(ii), we regard BX ⊗BY as a subgroup of X ⊗Y . For any elementary

tensor x⊗y ∈ ZX⊗ZY the element κ(x⊗y) = x⊗y ∈ X⊗Y is clearly annihilated by ∂X⊗1,
whence the inclusion imκ ⊆ kerλ. In order to prove that kerλ ⊆ imκ, we let ξ ∈ BX⊗Y be
an element in kerλ and write ξ = ∂X⊗Y η for some η ∈ X⊗Y . Then, (∂X⊗∂Y )η = 0 ∈ X⊗Y
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and hence we may write η = η1 + η2 for suitable elements η1 ∈ im
(
ZX ⊗ Y

ȷX⊗1−→ X ⊗ Y
)
and

η2 ∈ im
(
X ⊗ ZY

1⊗ȷY−→ X ⊗ Y
)
; cf. Lemma 1.5. We note that the images of the compositions

ZX ⊗ Y
ȷX⊗1−→ X ⊗ Y

∂X⊗Y−→ X ⊗ Y and X ⊗ ZY
1⊗ȷY−→ X ⊗ Y

∂X⊗Y−→ X ⊗ Y

are equal to the images of the additive maps

X ⊗ ıY : ZX ⊗BY −→ X ⊗ Y and ıX ⊗ Y : BX ⊗ ZY −→ X ⊗ Y

respectively. Indeed, for any homogeneous element x ∈ ZX of degree n and any y ∈ Y we
have ∂X⊗Y (x ⊗ y) = (−1)nx ⊗ ∂Y y ∈ X ⊗ Y , whereas for any x′ ∈ X and y′ ∈ ZY we have
∂X⊗Y (x

′ ⊗ y′) = ∂Xx
′ ⊗ y′ ∈ X ⊗ Y . Since one of the two differential modules is acyclic (and

hence ZX = BX or ZY = BY ), it follows that

ξ = ∂X⊗Y η = ∂X⊗Y η1 + ∂X⊗Y η2 ∈ im (X ⊗ ıY ) + im (ıX ⊗ Y ) = im
(
ZX ⊗ ZY

ȷX⊗ȷY−→ X ⊗ Y
)
.

Therefore, we conclude that ξ ∈ imκ.
(ii) This follows from Corollary 1.3(ii).
(iii) We work under the assumption that Y is flat. (An analogous argument may be used

if we assume that X is flat.) We fix ξ ∈ ZX⊗Y and note that the equality ∂X⊗Y ξ = 0 implies
that (∂X ⊗ 1)ξ = −(1⊗ ∂Y )ξ is an element in the intersection

im
(
BX ⊗ Y

ıX⊗1−→ X ⊗ Y
)
∩ im

(
X ⊗BY

1⊗ıY−→ X ⊗ Y
)
⊆ X ⊗ Y.

In view of our assumptions and Lemma 1.6, we conclude that

(∂X ⊗ 1)ξ = −(1⊗ ∂Y )ξ ∈ im
(
BX ⊗BY

ıX⊗ıY−→ X ⊗ Y
)
= im

(
X ⊗ Y

∂X⊗∂Y−→ X ⊗ Y
)

and hence (∂X ⊗ 1)ξ = −(1 ⊗ ∂Y )ξ = (∂X ⊗ ∂Y )η for a suitable element η ∈ X ⊗ Y . Then,
(∂X ⊗ 1)[ξ − (1 ⊗ ∂Y )η] = (∂X ⊗ 1)ξ − (∂X ⊗ ∂Y )η = 0 ∈ X ⊗ Y . Since X is acyclic and
Y is flat, the kernel of the additive map ∂X ⊗ 1 coincides with its image. It follows that
ξ − (1⊗ ∂Y )η = (∂X ⊗ 1)ζ for a suitable element ζ ∈ X ⊗ Y and hence

(1) ξ = (1⊗ ∂Y )η + (∂X ⊗ 1)ζ.

Applying 1⊗ ∂Y to both sides of the latter equality, it follows that (1⊗ ∂Y )ξ = −(∂X ⊗ ∂Y )ζ
and hence (∂X ⊗ ∂Y )η = −(1⊗ ∂Y )ξ = (∂X ⊗ ∂Y )ζ. Then, Lemma 1.5 implies that

ζ − η ∈ ker (∂X ⊗ ∂Y ) = im
(
BX ⊗ Y

ıX⊗1−→ X ⊗ Y
)
+ im

(
X ⊗BY

1⊗ıY−→ X ⊗ Y
)
.

Applying now ∂X ⊗ 1, it follows that

(∂X ⊗ 1)ζ − (∂X ⊗ 1)η ∈ im
(
X ⊗BY

∂X⊗ıY−→ X ⊗ Y
)
= im

(
X ⊗ Y

∂X⊗∂Y−→ X ⊗ Y
)
.

Therefore, (∂X ⊗ 1)ζ − (∂X ⊗ 1)η = (∂X ⊗ ∂Y )τ for a suitable element τ ∈ X ⊗ Y and hence
(∂X⊗1)ζ = (∂X⊗1)η+(∂X⊗∂Y )τ . Invoking (1) and the equality ∂X⊗Y ◦ (1⊗∂Y ) = ∂X⊗∂Y ,
we conclude that ξ = (1⊗ ∂Y )η+ (∂X ⊗ 1)η+ (∂X ⊗ ∂Y )τ = ∂X⊗Y [η+ (1⊗ ∂Y )τ ] ∈ BX⊗Y . �

Rearranging parts of Proposition 1.7, we may formulate the following result.
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Theorem 1.8. Let (X, ∂X) be a differential right R-module and (Y, ∂Y ) a differential R-
module. We assume that:

(i) both differential modules are acyclic,
(ii) one of the two differential modules is flat and
(iii) TorR1 (BX , BY ) = 0.

Then, the differential module X⊗Y is acyclic and there exists a short exact sequence of graded
abelian groups

0 −→ BX ⊗BY
κ−→ BX⊗Y

λ−→ BX ⊗BY −→ 0.

The map κ is homogeneous and maps any elementary tensor x⊗ y ∈ BX ⊗ BY onto x⊗ y ∈
BX⊗Y ⊆ X ⊗ Y , whereas the map λ is graded of degree −1 and maps any element ξ ∈ BX⊗Y

onto (∂X ⊗ 1)ξ = −(1⊗ ∂Y )ξ ∈ BX ⊗BY ⊆ X ⊗ Y . �
Remark 1.9. Let (X, ∂X) and (Y, ∂Y ) be differential modules as in Theorem 1.8. Then, there
is an alternative way to describe the additive map λ therein. Indeed, if pX : X −→ X/BX is the

quotient map, then θX : X −→ BX can be factored as the composition X
pX−→ X/BX

θX−→ BX .
Since X is acyclic, θX is bijective. There is an analogous factorization associated with Y .
Then, there is a unique additive map λ′ : BX⊗Y −→ X/BX ⊗ Y/BY , which when followed by
the isomorphism θX ⊗ θY : X/BX ⊗ Y/BY −→ BX ⊗ BY coincides with the map λ. Since
λ is graded of degree −1 and θX ⊗ θY is graded of degree −2, it follows that λ′ is graded
of degree +1. For any ξ ∈ X ⊗ Y the element ∂X⊗Y ξ ∈ BX⊗Y is mapped under λ′ onto
(pX ⊗ pY )ξ ∈ X/BX ⊗ Y/BY . Of course, there is an exact sequence of graded abelian groups

0 −→ BX ⊗BY
κ−→ BX⊗Y

λ′
−→ X/BX ⊗ Y/BY −→ 0,

which is essentially identified with that in Theorem 1.8.

II. Reformulation in the language of chain complexes. Let X = ((Xn)n, ∂X) be a
chain complex of right R-modules and Y = ((Yn)n, ∂Y ) a chain complex of R-modules. Then,
the tensor product complex X ⊗ Y = (((X ⊗ Y )n)n, ∂X⊗Y ) is the chain complex of abelian
groups with (X ⊗ Y )n =

⊕
i+j=nXi ⊗ Yj for all n and differential ∂X⊗Y , which maps any

elementary tensor xi ⊗ yj ∈ Xi ⊗ Yj onto ∂Xxi ⊗ yj + (−1)ixi ⊗ ∂Y yj. We may reformulate
Theorem 1.8, by considering the homogeneous parts of any given degree therein, in order to
obtain some information about the boundary groups (Bn(X ⊗ Y ))n of the complex X ⊗ Y , in
terms of the boundary groups (BnX)n and (BnY )n of the complexes X and Y .

Theorem 1.10. Let X be a chain complex of right R-modules and Y a chain complex of
R-modules as above and assume that the following conditions are satisfied:

(i) both complexes are acyclic,
(ii) one of the two complexes consists of flat modules and
(iii) TorR1 (BiX,BjY ) = 0 for all i, j.

Then, the tensor product complex X⊗Y is also acyclic and there exists a short exact sequence
of abelian groups

0 −→
⊕

i+j=nBiX ⊗BjY
κ−→ Bn(X ⊗ Y )

λ−→
⊕

i+j=n−1BiX ⊗BjY −→ 0

for all n. The map κ maps any elementary tensor xi ⊗ yj ∈ BiX ⊗ BjY onto xi ⊗ yj ∈
Bi+j(X ⊗ Y ) ⊆ (X ⊗ Y )i+j, whereas the map λ maps any element ξn ∈ Bn(X ⊗ Y ) onto
(∂X ⊗ 1)ξn = −(1⊗ ∂Y )ξn ∈

⊕
i+j=n−1BiX ⊗BjY ⊆ (X ⊗ Y )n−1. �
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Remarks 1.11. (i) As we pointed out in the Introduction, there are several techniques that
may be used in order to analyse the acyclicity of the tensor product of two acyclic complexesX
and Y . For example, if the modules (Bi(X))i are flat, then the acyclicity of the tensor product
X ⊗ Y claimed in Theorem 1.10 follows from Neeman’s result [10] (even if the complex Y is
not necessarily acyclic). We believe that Theorem 1.10 is of some interest, as it also provides
us with a description of the boundary groups of the (acyclic) tensor product complex X ⊗ Y .
(ii) The short exact sequences in Theorem 1.10 are natural in X and Y . Therefore, if S and

T are two rings, X is a complex of (S,R)-bimodules and Y is a complex of (R, T )-bimodules,
then these short exact sequences are actually short exact sequences of (S, T )-bimodules. In
particular, if the ring R is commutative, then all tensor products involved are R-modules and
these short exact sequences are short exact sequences of R-modules.

2. The tensor product of syzygies of flat complexes

In this section, we consider the class of modules that appear as syzygies of acyclic complexes
of flat modules and examine a certain homological condition, which implies that (over a
commutative ring) the tensor product of two such modules is also a syzygy of an acyclic
complex of flat modules.

I. Tor-independence of infinite syzygies. We denote by S∞
flat(R) the class of those

R-modules that may be expressed as syzygies of acyclic complexes of flat modules. In other
words, an R-module M is in S∞

flat(R) if and only if there exists an acyclic complex of flat
modules X, such that M = B0X is its 0-th boundary module. The class S∞

flat(R) is obviously
closed under direct sums. We also consider the corresponding class S∞

flat(R
op) of right R-

modules and examine carefully the condition appearing as assumption (iii) in Theorem 1.10.

Lemma 2.1. Let X be an acyclic chain complex of flat right R-modules and Y an acyclic
chain complex of flat R-modules. Then, the following conditions are equivalent:

(i) TorR1 (BiX,B0Y ) = 0 for all i,
(ii) TorRn (BiX,B0Y ) = 0 for all n ≥ 1 and all i,
(iii) TorR1 (BiX,BjY ) = 0 for all i, j and
(iv) TorRn (BiX,BjY ) = 0 for all n ≥ 1 and all i, j.

Proof. Since TorRn (BiX, ) = TorR1 (Bi+n−1X, ) for all n ≥ 1 and all i, assertions (i) and (ii)
are clearly equivalent. In fact, they are both equivalent to the acyclicity of the complex of
abelian groups X ⊗ B0Y . For the same reason, assertions (iii) and (iv) are also equivalent;
these are precisely the ”for all j” versions of the former two assertions. Since (iii)→(i), it only
remains to show that (ii)→(iii). To that end, we assume that (ii) holds and fix two integers
i, j. If j ≥ 0, then TorR1 (BiX,BjY ) = TorR1+j(BiX,B0Y ) = 0. On the other hand, if j < 0,

then TorR1 (BiX,BjY ) = TorR1−j(Bi+jX,BjY ) = TorR1 (Bi+jX,B0Y ) = 0. �

Remark 2.2. Note that conditions (iii) and (iv) in Lemma 2.1 remain invariant by replacing
the complex Y with any of its suspensions. It follows that, for any integer s, these conditions
are also equivalent to the conditions obtained from (i) and (ii) by replacing the module B0Y
therein with BsY . We also note that conditions (iii) and (iv) are symmetric with respect to
the complexes X and Y . Therefore, these conditions are also equivalent to:

(i)’ TorR1 (B0X,BjY ) = 0 for all j,
(ii)’ TorRn (B0X,BjY ) = 0 for all n ≥ 1 and all j.
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Proposition 2.3. The following two conditions are equivalent for a pair of modules (M,N),
where M ∈ S∞

flat(R
op) and N ∈ S∞

flat(R):
(i) There exists an acyclic complex of flat right R-modules X with M = B0X and an acyclic

complex of flat R-modules Y with N = B0Y , such that the equivalent conditions of Lemma
2.1, as supplemented by Remark 2.2, are satisfied for X and Y .
(ii) If X is any acyclic complex of flat right R-modules with M = B0X and Y is any acyclic

complex of flat R-modules with N = B0Y , then the equivalent conditions of Lemma 2.1, as
supplemented by Remark 2.2, are satisfied for X and Y .
If these conditions are satisfied, we say that the modules M and N are Tor-independent.

Proof. SinceM ∈ S∞
flat(R

op) and N ∈ S∞
flat(R), it is clear that (ii)→(i). In order to prove that

(i)→(ii), we fix a pair (X,Y ) as in (i) and assume that X ′ (resp. Y ′) is another acyclic complex
of flat right (resp. left) R-modules with M = B0X (resp. N = B0Y ). Since the pair (X,Y )
satisfies the list of equivalent conditions in Lemma 2.1, condition (i) therein implies that the
pair (X,Y ′) satisfies these equivalent conditions as well. Then, condition (i)’ in Remark 2.2
implies that the pair (X ′, Y ′) also satisfies these equivalent conditions. �

In the special case where M or N is Gorenstein projective [7], Tor-independence is equivalent

to the vanishing of the Tate homology groups T̂or
R

∗ (M,N). Indeed, if we assume that M is
Gorenstein projective and X is a totally acyclic complex of projective modules admitting M

as a kernel, then the homology of the complex X ⊗N is the Tate homology T̂or
R

∗ (M,N); cf.
[6, §2.4].

For any module M ∈ S∞
flat(R

op) we consider the class M⋄, consisting of those modules
N ∈ S∞

flat(R), which are Tor-independent to M . If X is an acyclic complex of flat right R-
modules, such that M = B0X, then M⋄ = {N ∈ S∞

flat(R) : the complex X ⊗N is acyclic};
this follows from condition (i) in Lemma 2.1.

Lemma 2.4. Let M be a right R-module in S∞
flat(R

op) and consider the class M⋄ defined
above. Then:

(i) If (Ni)i is a family of modules in M⋄, then
⊕

i Ni ∈M⋄.
(ii) If 0 −→ N ′ −→ N −→ N ′′ −→ 0 is a short exact sequence of modules in S∞

flat(R) and
two of these modules are contained in M⋄, then so is the third.

Proof. Let X be an acyclic complex of flat right R-modules, such that M = B0X.
(i) Since

⊕
i Ni ∈ S∞

flat(R
op), the result follows from the acyclicity of the complex of abelian

groups X ⊗(
⊕

i Ni)=
⊕

i(X ⊗Ni).
(ii) The long exact sequence in homology, which is induced by the short exact sequence of

complexes of abelian groups 0 −→ X ⊗N ′ −→ X ⊗N −→ X ⊗N ′′ −→ 0 shows that if two
of these three complexes are acyclic, then so is the third. �

Remark 2.5. For any N ∈ S∞
flat(R) we may also consider the class ⋄N , consisting of those

modules M ∈ S∞
flat(R

op), which are Tor-independent to N . If Y is an acyclic complex of flat
R-modules, such that N = B0Y , then ⋄N consists of those modules M ∈ S∞

flat(R
op), which

are such that the complex M ⊗ Y is acyclic; this follows from condition (i)’ in Remark 2.2.
The analogue of Lemma 2.4 holds for ⋄N , i.e. ⋄N is closed under direct sums and has the
2-out-of-3 property for short exact sequences in S∞

flat(R
op).

II. The pinched tensor product complex. LetX be a chain complex of right R-modules
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and Y a chain complex of R-modules. We recall the definition of the pinched tensor product
complex X ⊗◃▹ Y , as defined in [6]. It is the total complex associated with the bicomplex of
abelian groups pictured below

(2)

...
...

↓ ↓
X0 ⊗ Y1 ←− X1 ⊗ Y1 ←− · · ·
↓ ↓

· · · ←− X−2 ⊗ Y−1 ←− X−1 ⊗ Y−1
δ←− X0 ⊗ Y0 ←− X1 ⊗ Y0 ←− · · ·

↓ ↓
· · · ←− X−2 ⊗ Y−2 ←− X−1 ⊗ Y−2

↓ ↓
...

...

Here, the abelian group Xi ⊗ Yj is located in bidegree (i, j) (resp. in bidegree (i, j + 1)) if
i, j ≥ 0 (resp. if i, j < 0). The map δ is the tensor product of the differentials X0 −→ X−1

and Y0 −→ Y−1, the other horizontal differentials are induced by the differentials of X and
the vertical differentials are, up to a sign, the maps induced by the differentials of Y . (The
signs are chosen so that all squares anti-commute.) Let X<0 ⊆ X (resp. Y<0 ⊆ Y ) be the
subcomplex consisting of Xi (resp. Yi) in degrees i < 0 and 0 in non-negative degrees. Then,
setting the differential δ aside, the pinched tensor product complex consists of X/X<0⊗Y/Y<0

in positive degrees (this is the total complex of the fist quadrant part of the bicomplex (2)
above) and the suspension Σ(X<0 ⊗ Y<0) in negative degrees (this is the total complex of the
third quadrant part of the bicomplex (2) above).

Proposition 2.6. Let X be an acyclic chain complex of flat right R-modules and Y an acyclic
chain complex of flat R-modules. Assume that X and Y satisfy the equivalent conditions of
Lemma 2.1, as supplemented by Remark 2.2. Then, the pinched tensor product complex X⊗◃▹Y
is acyclic and B−1(X ⊗◃▹ Y ) = B−1X ⊗B−1Y .

Proof. (cf. [6, Theorem 3.5]) Let M = B−1X and factor the differential X0 −→ X−1 as the

composition X0
ϵ−→M

η−→ X−1, where η is the inclusion. We also let N = B−1Y and factor

the differential Y0 −→ Y−1 as the composition Y0
ϵ′−→ N

η′−→ Y−1, where η′ is the inclusion.

Then, the additive map δ is the composition X0 ⊗ Y0
ϵ⊗ϵ′−→M ⊗N

η⊗η′−→ X−1 ⊗ Y−1. The proof
follows from the following four assertions:

(i) There is an exact sequence

(X0 ⊗ Y1)⊕ (X1 ⊗ Y0) −→ X0 ⊗ Y0
ϵ⊗ϵ′−→M ⊗N −→ 0,

where the unlabelled arrow is the differential of the complex X ⊗◃▹ Y .
(ii) There is an exact sequence

0 −→M ⊗N
η⊗η′−→ X−1 ⊗ Y−1 −→ (X−2 ⊗ Y−1)⊕ (X−1 ⊗ Y−2),

where the unlabelled arrow is the differential of the complex X ⊗◃▹ Y .
(iii) The complex X ⊗◃▹ Y is acyclic in positive degrees.
(iv) The complex X ⊗◃▹ Y is acyclic in degrees < −1.

Since the linear maps ε and ε′ induce isomorphisms X0/imX1 ≃ M and Y0/imY1 ≃ N ,
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assertion (i) is a well-known consequence of the right exactness of the tensor product. Assertion
(ii) follows by inspecting the following commutative diagram

0 0 0
↓ ↓ ↓

0 −→ M ⊗N
η⊗1−→ X−1 ⊗N −→ X−2 ⊗N

↓ 1⊗η′ ↓ 1⊗η′ ↓ 1⊗η′

0 −→ M ⊗ Y−1
η⊗1−→ X−1 ⊗ Y−1 −→ X−2 ⊗ Y−1

↓ ↓ ↓
0 −→ M ⊗ Y−2

η⊗1−→ X−1 ⊗ Y−2 −→ X−2 ⊗ Y−2

whose rows and columns are exact. (We note that the top row is exact, since the complex
X ⊗ N is acyclic in degrees 0 and −1, whereas the left column is exact, since the complex
M ⊗ Y is acyclic in degrees 0 and −1.) The module Xi being flat, the i-th column of the
bicomplex X/X<0 ⊗ Y/Y<0 is quasi-isomorphic with the abelian group Xi ⊗ N sitting in
bidegree (i, 0) for all i ≥ 0 (with the quasi-isomorphism induced by ε′ : Y0 −→ N). Then, a
(first quadrant) spectral sequence argument shows that the complex X/X<0⊗Y/Y<0 is quasi-
isomorphic with X/X<0 ⊗ N . Assertion (iii) follows since X/X<0 ⊗ N is acyclic in positive
degrees (as this is the case for X ⊗ N). In the same way, the flatness of Xi shows that the
i-th column of the bicomplex X<0 ⊗ Y<0 is quasi-isomorphic with the abelian group Xi ⊗ N
sitting in bidegree (i, 0) for all i < 0 (with the quasi-isomorphism induced by η′ : N −→ Y−1).
Then, a (third quadrant) spectral sequence argument shows that the complex Σ(X<0 ⊗ Y<0)
is quasi-isomorphic with X<0 ⊗N . Assertion (iv) follows since X<0 ⊗N is acyclic in degrees
< −1 (as this is the case for X ⊗N). �
Corollary 2.7. Let R be a commutative ring and consider two Tor-independent modules
M,N ∈ S∞

flat(R). Then, M ⊗N ∈ S∞
flat(R).

Proof. Let X,Y be two acyclic complexes of flat R-modules, such that M = B−1X and
N = B−1Y . Since R is commutative, the pinched tensor product complex X⊗◃▹ Y is clearly a
complex of R-modules. In fact, the class of flat R-modules being closed under tensor products
and direct sums, the complex X ⊗◃▹ Y is a complex of flat R-modules. Then, Proposition 2.6
implies that M ⊗N = B−1(X ⊗◃▹ Y ) ∈ S∞

flat(R), as needed. �

3. Syzygies, complexes and homomorphism groups

In this section, we examine the Hom complex of two acyclic complexes of R-modules. Under
certain conditions (which imply that the Hom complex is acyclic), we compute the syzygy
groups of that Hom complex, in terms of the syzygies of the two complexes. We also consider
the class of modules that appear as syzygies of acyclic complexes of projective or injective
modules and examine a homological condition, which implies that (over a commutative ring)
the Hom group of two such modules is a syzygy of an acyclic complex of injective modules.

I. The group of homomorphisms of two differential modules. We consider the
category ∆(R) of differential R-modules, as defined in §1.I. We recall that for any object
(X, ∂X) of ∆(R) the R-module X is the direct sum of its homogeneous components. We now
consider a variant of that category, denoted by ∆Π(R), which is defined as follows: The objects
of ∆Π(R) are pairs (Y, ∂Y ), where Y is a Z-graded R-module viewed as the direct product
of its homogeneous components and the differential ∂Y : Y −→ Y is a square zero linear
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endomorphism of Y , which is graded of degree −1. We call (Y, ∂Y ) a Π-differential module.
The morphisms of ∆Π(R) are the homogeneous (i.e. graded of degree zero) linear maps that
commute with the respective differentials. We say that the Π-differential module (Y, ∂Y ) if
injective if this is the case for the underlying R-module Y . The module of boundaries BY , the
embedding ıY : BY ↪→ Y and the quotient map pY : Y −→ Y/BY , the module of cycles ZY ,
the embedding Y : ZY ↪→ Y and the quotient map qY : Y −→ Y/ZY , the homology module
ZY /BY and the acyclicity of the Π-differential module (Y, ∂Y ) and, finally, the factorization

of ∂Y as the composition Y
θY−→ BY

ıY−→ Y are defined as in the case of differential modules.
The Hom functor in the category of modules induces a bifunctor

∆(R)×∆Π(R) −→ ∆Π(Z).
If (X, ∂X) is a differential R-module and (Y, ∂Y ) is a Π-differential R-module, then the Π-
differential abelian group ([X,Y ], ∂[X,Y ]) consists in degree n of

∏
j−i=n[Xi, Yj] and the differ-

ential ∂[X,Y ] is given by the additive map

[1, ∂Y ]− [∂X , 1] : [X,Y ] −→ [X,Y ].

We adopt the usual sign convention for the maps induced by the contravariant Hom functor2,
so that ∂[X,Y ] maps any element (fn)n ∈ [X,Y ] onto (∂Y ◦ fn+1 − (−1)n+1fn+1 ◦ ∂X)n.

Lemma 3.1. Let (X, ∂X) be a differential R-module and (Y, ∂Y ) a Π-differential R-module.
Then, the additive maps

[ıX , pY ] : [X,Y ] −→ [BX , Y/BY ] and [X , qY ] : [X,Y ] −→ [ZX , Y/ZY ]

vanish on the subgroup Z[X,Y ] ⊆ [X,Y ].

Proof. This is a reformulation of the fact that any element of Z[X,Y ] maps boundaries of X to
boundaries of Y and cycles of X to cycles of Y . �
Lemma 3.2. Let (X, ∂X) be a differential R-module, (Y, ∂Y ) a Π-differential R-module and
assume that the former is acyclic and projective or else the latter is acyclic and injective.

(i) If Ext1R(ZX , Y/BY ) = 0, then the map [X , pY ] : [X,Y ] −→ [ZX , Y/BY ] is surjective.
(ii) If Ext1R(BX , BY ) = 0, then the map [ıX , θY ] : [X,Y ] −→ [BX , BY ] is surjective.

Proof. We assume that (X, ∂X) is acyclic and projective. (Similar arguments can be applied
if we assume that (Y, ∂Y ) is acyclic and injective.) We note that the surjective linear map
θX : X −→ BX induces an isomorphism of R-modules coker X = X/ZX ≃ BX .
(i) We express the additive map [X , pY ] as the composition

[X,Y ]
[1,pY ]−→ [X,Y/BY ]

[ȷX ,1]−→ [ZX , Y/BY ].

The result follows since both of these maps are surjective: The surjectivity of [1, pY ] follows
from the projectivity of X, whereas the surjectivity of [X , 1] follows from the triviality of the
group Ext1R(coker X , Y/BY ) ≃ Ext1R(BX , Y/BY ) = Ext1R(ZX , Y/BY ).
(ii) We express the additive map [ıX , θY ] as the composition

[X,Y ]
[1,θY ]−→ [X,BY ]

[ıX ,1]−→ [BX , BY ].

The result follows since both of these maps are surjective: The surjectivity of [1, θY ] follows
from the projectivity of X, whereas the surjectivity of [ıX , 1] follows from the triviality of the

2Whenever X
f−→ X ′ g−→ X ′′ and Y

h−→ Y ′ k−→ Y ′′ are graded linear maps of degrees f̃ , g̃, h̃ and k̃

respectively, then [f, k] ◦ [g, h] = (−1)g̃(f̃+k̃)[g ◦ f, k ◦ h] : [X ′′, Y ] −→ [X,Y ′′].
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group Ext1R(coker ıX , BY ) = Ext1R(coker X , BY ) ≃ Ext1R(BX , BY ). �

Let (Y, ∂Y ) be a Π-differential R-module. Since BY ⊆ ZY , there is a unique linear map
∂Y : Y/BY −→ Y so that ∂Y = ∂Y ◦ pY : Y −→ Y .

Corollary 3.3. Let (X, ∂X) be a differential R-module, (Y, ∂Y ) a Π-differential R-module and
assume that one of them is acyclic.

(i) There is a unique additive map µ : B[X,Y ] −→ [ZX , Y/BY ], which is graded of degree 1,

such that the composition [X,Y ]
θ[X,Y ]−→ B[X,Y ]

µ−→ [ZX , Y/BY ] provides a factorization of the
map [X , pY ] : [X,Y ] −→ [ZX , Y/BY ]. For any f ∈ B[X,Y ] ⊆ [X,Y ] its restriction f ◦ X to

ZX is equal to the composition ∂Y ◦ µ(f) ∈ [ZX , Y ].
(ii) Assume that (X, ∂X) is acyclic and projective or else (Y, ∂Y ) is acyclic and injective. If

Ext1R(ZX , Y/BY ) = 0, then µ is surjective.

Proof. The existence of µ follows from Lemma 3.1. Since θ[X,Y ] is graded of degree −1 and the
composition µ ◦ θ[X,Y ] = [X , pY ] is homogeneous, it follows that µ is graded of degree 1. For
any f ∈ B[X,Y ] we can write f = ∂[X,Y ]g = [1, ∂Y ]g− [∂X , 1]g for a suitable element g ∈ [X,Y ]
and then compute

[X , 1]f = [X , 1][1, ∂Y ]g − [X , 1][∂X , 1]g = [X , ∂Y ]g =
[
1, ∂Y

]
[X , pY ]g =

[
1, ∂Y

]
µ(f).

In the above chain of equalities, the second one follows since ∂X ◦ X = 0 and the third one
since ∂Y = ∂Y ◦ pY . Assertion (ii) follows from Lemma 3.2(i). �

We note that the factorizations ∂X = ıX ◦ θX and ∂Y = ıY ◦ θY imply that

[∂X , ∂Y ] = [ıX ◦ θX , ıY ◦ θY ] = [θX , ıY ] ◦ [ıX , θY ] : [X,Y ] −→ [X,Y ].

It follows that the kernel of the map [ıX , θY ] : [X,Y ] −→ [BX , BY ] is contained in the kernel of
the map [∂X , ∂Y ] : [X,Y ] −→ [X,Y ]. In fact, since [θX , ıY ] : [BX , BY ] −→ [X,Y ] is injective
(as θX is surjective and ıY is injective), we conclude that

ker
(
[X,Y ]

[∂X ,∂Y ]−→ [X,Y ]
)
= ker

(
[X,Y ]

[ıX ,θY ]−→ [BX , BY ]
)
.

On the other hand, the equalities

(3) [∂X , ∂Y ] = ([∂X , 1]− [1, ∂Y ]) ◦ [∂X , 1] = −∂[X,Y ] ◦ [∂X , 1] : [X,Y ] −→ [X,Y ]

show that im [∂X , ∂Y ] ⊆ B[X,Y ].

Corollary 3.4. Let (X, ∂X) be a differential R-module, (Y, ∂Y ) a Π-differential R-module and
assume that the former is acyclic and projective or else the latter is acyclic and injective. If
Ext1R(BX , BY ) = 0, then there exists a unique injective additive map ν : [BX , BY ] −→ B[X,Y ],
which is such that the composition

[X,Y ]
[ıX ,θY ]−→ [BX , BY ]

ν−→ B[X,Y ]

ı[X,Y ]−→ [X,Y ]

provides a factorization of the map [∂X , ∂Y ] : [X,Y ] −→ [X,Y ]. The map ν is graded of degree
−1 and for any element f ∈ [BX , BY ] we have ν(f) = [θX , ıY ]f ∈ B[X,Y ] ⊆ [X,Y ].

Proof. In view of Lemma 3.2(ii), the map [ıX , θY ] : [X,Y ] −→ [BX , BY ] is surjective and,
as noted above, its kernel is equal to the kernel of the map [∂X , ∂Y ] : [X,Y ] −→ [X,Y ]. We
conclude that [∂X , ∂Y ] factors as the composition of [ıX , θY ] followed by a certain injective map
[BX , BY ] −→ [X,Y ], whose image is equal to im [∂X , ∂Y ], Since the latter group is contained in
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B[X,Y ], we obtain a factorization through the subgroup B[X,Y ] ⊆ [X,Y ], as needed. The map
ı[X,Y ] is homogeneous, [ıX , θY ] is graded of degree −1 and the composition ı[X,Y ] ◦ν ◦ [ıX , θY ] =
[∂X , ∂Y ] is graded of degree −2; therefore, ν is graded of degree −1. Finally, the factorization
[∂X , ∂Y ] = [θX , ıY ] ◦ [ıX , θY ] and the fact that [ıX , θY ] is surjective, show that ν maps any
element f ∈ [BX , BY ] onto [θX , ıY ]f ∈ B[X,Y ] ⊆ [X,Y ]. �

In order to examine the acyclicity of the Π-differential abelian group [X,Y ], which is associated
with two differential modules as above, we shall use the following result.

Lemma 3.5. Let (X, ∂X) be an acyclic differential R-module, (Y, ∂Y ) an acyclic Π-differential
R-module and assume that Ext1R(BX , BY ) = 0. Then,

ker
(
[X,Y ]

[∂X ,∂Y ]−→ [X,Y ]
)
= im

(
[BX , Y ]

[θX ,1]−→ [X,Y ]
)
+ im

(
[X,BY ]

[1,ıY ]−→ [X,Y ]
)
.

Proof. We have noted above that ker [∂X , ∂Y ] = ker [ıX , θY ]. Hence, the result follows by
inspecting the following commutative diagram, whose rows and columns are exact

0 −→ [BX , BY ]
[1,ıY ]−→ [BX , Y ]

−[1,θY ]−→ [BX , BY ] −→ 0
↓ [θX ,1] ↓ [θX ,1] ↓ [θX ,1]

0 −→ [X,BY ]
[1,ıY ]−→ [X,Y ]

[1,θY ]−→ [X,BY ]
↓ [ıX ,1] ↓ [ıX ,1] ↓ [ıX ,1]

0 −→ [BX , BY ]
[1,ıY ]−→ [BX , Y ]

[1,θY ]−→ [BX , BY ]

We note that the exactness of the first row follows since Ext1R(BX , BY ) = 0. �

Proposition 3.6. Let (X, ∂X) be a differential R-module, (Y, ∂Y ) a Π-differential R-module
and assume that the former is acyclic and projective or else the latter is acyclic and injective.
We also assume that Ext1R(BX , BY ) = 0.
(i) There exists an exact sequence of graded abelian groups

0 −→ [BX , BY ]
ν−→ B[X,Y ]

µ−→ [ZX , Y/BY ].

The map ν is graded of degree −1 and maps any f ∈ [BX , BY ] onto [θX , ıY ]f ∈ B[X,Y ] ⊆ [X,Y ],

i.e. the composition [X,Y ]
[ıX ,θY ]−→ [BX , BY ]

ν−→ B[X,Y ]

ı[X,Y ]−→ [X,Y ] provides a factorization of
[∂X , ∂Y ] : [X,Y ] −→ [X,Y ]. The map µ is graded of degree 1 and the composition µ ◦ θ[X,Y ]

coincides with [X , pY ] : [X,Y ] −→ [ZX , Y/BY ]; for any g ∈ B[X,Y ] ⊆ [X,Y ] the restriction

g ◦ X of g to ZX is equal to the composition ∂Y ◦ µ(g) ∈ [ZX , Y ].
(ii) If we also have Ext1R(ZX , Y/BY ) = 0, then the map µ in (i) above is surjective.
(iii) If both (X, ∂X) and (Y, ∂Y ) are acyclic, then ([X,Y ], ∂[X,Y ]) is acyclic as well.

Proof. (i) In view of our assumptions, the existence of µ and ν (and the injectivity of ν) follow
from Corollary 3.3(i) and Corollary 3.4 respectively. We have to show that im ν = kerµ. Since
[ıX , θY ] : [X,Y ] −→ [BX , BY ] is surjective (cf. Lemma 3.2(ii)), we have im ν = im [∂X , ∂Y ].
In order to prove that im ν ⊆ kerµ, i.e. that im [∂X , ∂Y ] ⊆ kerµ, we consider an element f ∈

im [∂X , ∂Y ] and write f = [∂X , ∂Y ]g for a suitable g ∈ [X,Y ]. As we noted in (3), [∂X , ∂Y ] =
−∂[X,Y ]◦ [∂X , 1]; it follows that f = −∂[X,Y ][∂X , 1]g and hence µ(f) = −[X , pY ][∂X , 1]g = 0 (as
∂X ◦ X = 0). Conversely, in order to prove that kerµ ⊆ im ν, consider an element f ∈ B[X,Y ]

in the kernel of µ and write f = ∂[X,Y ]g for a suitable g ∈ [X,Y ]. Then, [X , pY ]g = µ(f) =
0 ∈ [ZX , Y/BY ] and a fortiori [ıX , pY ]g = 0 ∈ [BX , Y/BY ]. Since pY ◦∂Y = 0 and ∂X = ıX ◦θX ,
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it follows that

[1, pY ]∂[X,Y ]g = [1, pY ][1, ∂Y ]g − [1, pY ][∂X , 1]g = −[∂X , pY ]g = −[θX , 1][ıX , pY ]g = 0.

Then, [1, pY ]f = 0 and hence we have proved that im f ⊆ BY . Since ∂X ◦ X = 0 and ∂Y may

be factored as the composition Y
pY−→ Y/BY

∂Y−→ Y , we compute

[X , 1]∂[X,Y ]g = [X , 1][1, ∂Y ]g − [X , 1][∂X , 1]g = [X , ∂Y ]g =
[
1, ∂Y

]
[X , pY ]g = 0.

Then, [X , 1]f = 0 and hence we have also proved that ZX ⊆ ker f . It follows that f factors as

a composition X
θX−→ BX −→ BY

ıY−→ Y and hence f = [θX , ıY ]h = ν(h) ∈ im ν for a suitable
h ∈ [BX , BY ], as needed.

(ii) This follows from Corollary 3.3(ii).
(iii) We assume that X is projective. (An analogous argument may be used if we assume

that Y is injective.) Let f ∈ Z[X,Y ] and note that the equality ∂[X,Y ]f = 0 implies that
[1, ∂Y ]f = [∂X , 1]f ∈ [X,Y ] is annihilated by both [ıX , 1] (since ∂X ◦ ıX = 0) and [1, pY ] (since
pY ◦ ∂Y = 0). It follows that the map [1, ∂Y ]f = [∂X , 1]f vanishes on BX = ZX and its image

is contained in BY . Therefore, that map factors as a composition X
θX−→ BX −→ BY

ıY−→ Y
and hence [1, ∂Y ]f = [∂X , 1]f = [θX , ıY ]g for a suitable g ∈ [BX , BY ]. In view of Corollary
3.2(ii), the map [ıX , θY ] : [X,Y ] −→ [BX , BY ] is surjective and hence there exists h ∈ [X,Y ]
such that g = [ıX , θY ]h. It follows that

[1, ∂Y ]f = [∂X , 1]f = [θX , ıY ]g = [θX , ıY ][ıX , θY ]h = [ıX ◦ θX , ıY ◦ θY ]h = [∂X , ∂Y ]h

and hence [1, ∂Y ](f + [∂X , 1]h) = [1, ∂Y ]f − [∂X , ∂Y ]h = 0. Since X is projective and (Y, ∂Y ) is
acyclic, the kernel of the map [1, ∂Y ] coincides with its image; hence, there exists t ∈ [X,Y ],
such that f + [∂X , 1]h = [1, ∂Y ]t, i.e. f = [1, ∂Y ]t − [∂X , 1]h. Applying [∂X , 1] to both sides
of this equality, it follows that [∂X , 1]f = [∂X , ∂Y ]t and hence [∂X , ∂Y ]h = [∂X , ∂Y ]t. Then,
Lemma 3.5 implies that

h− t ∈ ker [∂X , ∂Y ] = im
(
[BX , Y ]

[θX ,1]−→ [X,Y ]
)
+ im

(
[X,BY ]

[1,ıY ]−→ [X,Y ]
)
.

Applying the additive map [1, ∂Y ], we conclude that

[1, ∂Y ]h− [1, ∂Y ]t ∈ im
(
[BX , Y ]

[θX ,∂Y ]−→ [X,Y ]
)
⊆ im

(
[BX , BY ]

[θX ,ıY ]−→ [X,Y ]
)
.

The inclusion above follows since ∂Y = ıY ◦θY and hence [θX , ∂Y ] = [θX , ıY ]◦[1, θY ]. Using once
more the surjectivity of [ıX , θY ] : [X,Y ] −→ [BX , BY ] (cf. Corollary 3.2(ii)), we may conclude
that [1, ∂Y ]h−[1, ∂Y ]t is contained in the image of [θX , ıY ]◦[ıX , θY ] = [ıX◦θX , ıY ◦θY ] = [∂X , ∂Y ].
In other words, there exists s ∈ [X,Y ], such that [1, ∂Y ]h − [1, ∂Y ]t = [∂X , ∂Y ]s and hence
[1, ∂Y ]t = [1, ∂Y ]h− [∂X , ∂Y ]s. Since ∂[X,Y ] ◦ [∂X , 1] = −[∂X , ∂Y ] (cf. (3)), we conclude that

f = [1, ∂Y ]t− [∂X , 1]h = [1, ∂Y ]h− [∂X , ∂Y ]s− [∂X , 1]h = ∂[X,Y ](h+ [∂X , 1]s)

and hence f ∈ B[X,Y ], as needed. �

As in §1.I, we can rearrange parts of Proposition 3.6 and state the following result.

Theorem 3.7. Let (X, ∂X) be a differential R-module and (Y, ∂Y ) a Π-differential R-module.
We assume that:

(i) both differential modules are acyclic,
(ii) X is projective or else Y is injective and
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(iii) Ext1R(BX , BY ) = 0.
Then, ([X,Y ], ∂[X,Y ]) is acyclic and there exists a short exact sequence of graded abelian groups

0 −→ [BX , BY ]
ν−→ B[X,Y ]

µ′
−→ [BX , BY ] −→ 0.

The map ν is graded of degree −1 and maps any f ∈ [BX , BY ] onto [θX , ıY ]f ∈ B[X,Y ] ⊆ [X,Y ].
The map µ′ is homogeneous and maps any g ∈ B[X,Y ] onto its restriction µ′(g) ∈ [BX , BY ]
(i.e. ıY ◦ µ′(g) = g ◦ ıX).
Proof. We can factor ∂Y : Y/BY −→ Y as the composition Y/BY

θY−→ BY
ıY−→ Y , where θY

is bijective, and define µ′ as the composition of the map µ in Proposition 3.6 followed by the

isomorphism [ZX , Y/BY ] = [BX , Y/BY ]
[1,θY ]
−→ [BX , BY ]. In other words, we let µ′ =

[
1, θY

]
◦µ,

so that µ′(g) = θY ◦ µ(g) ∈ [BX , BY ] for all g ∈ B[X,Y ] ⊆ [X,Y ]. For such a g, its restriction

g ◦ ıX = g ◦ X to BX = ZX is equal to ∂Y ◦ µ(g) = ıY ◦ θY ◦ µ(g) = ıY ◦ µ′(g). Of course,[
1, θY

]
being graded of degree −1, the map µ′ is homogeneous. �

II. Reformulation in the language of chain complexes. Let X = ((Xn)n, ∂X) and
Y = ((Yn)n, ∂Y ) be two chain complexes of R-modules. Then, the Hom complex [X,Y ] =
(([X,Y ]n)n, ∂[X,Y ]) is the chain complex of abelian groups with [X,Y ]n =

∏
j−i=n[Xi, Yj] for

all n and differential ∂[X,Y ], which maps any n-chain f = (fi,i+n)i ∈ [X,Y ]n (where fi,i+n ∈
[Xi, Yi+n] for all i) onto the n−1-chain g = (gi,i+n−1)i ∈ [X,Y ]n−1, where gi,i+n−1 = ∂Y ◦fi,i+n−
(−1)nfi−1,i+n−1 ◦ ∂X ∈ [Xi, Yi+n−1] for all i. We may reformulate Theorem 3.7, by considering
the homogeneous parts of any given degree therein, in order to obtain some information about
the boundary groups (Bn[X,Y ])n of the complex [X,Y ], in terms of the boundary groups
(BnX)n and (BnY )n of the complexes X and Y .

Theorem 3.8. Let X,Y be two chain complexes of R-modules as above and assume that the
following conditions are satisfied:

(i) both complexes are acyclic,
(ii) X consists of projective modules or else Y consists of injective modules and
(iii) Ext1R(BiX,BjY ) = 0 for all i, j.

Then, the Hom complex [X,Y ] is also acyclic and there exists a short exact sequence of abelian
groups

0 −→
∏

i[BiX,Bi+n+1Y ]
ν−→ Bn[X,Y ]

µ′
−→

∏
i[BiX,Bi+nY ] −→ 0.

for all n. The map ν maps any f = (fi,i+n+1)i ∈
∏

i[BiX,Bi+n+1Y ] onto (f ′
i,i+n)i ∈ Bn[X,Y ] ⊆

[X,Y ]n =
∏

i[Xi, Yi+n], where f ′
i,i+nxi = (−1)n+1fi−1,i+n∂Xxi ∈ Yi+n for all xi ∈ Xi and

all i. The map µ′ maps any g = (gi,i+n)i ∈ Bn[X,Y ] ⊆ [X,Y ]n =
∏

i[Xi, Yi+n] onto
(g′i,i+n)i ∈

∏
i[BiX,Bi+nY ], where g′i,i+nxi = gi,i+nxi ∈ Bi+nY ⊆ Yi+n for all xi ∈ BiX

(i.e. g′i,i+n : BiX −→ Bi+nY is the restriction of gi,i+n : Xi −→ Yi+n) for all i. �

Remarks 3.9. (i) Under the hypotheses of Theorem 3.8, the acyclicity of the complex [X,Y ]
in degree 0 means that any chain map g : X −→ Y is null-homotopic. Furthermore, assigning
to such a chain map g the sequence of linear maps which are induced between the respective
syzygy modules defines a surjective map µ′, whose kernel consists of those chain maps which

are given in any degree i by a composition of the form Xi
θX−→ Bi−1X −→ BiY ↪→ Yi. We

note that there are many types of hypotheses which are known to imply that all chain maps
between two complexes are null-homotopic. We believe that Theorem 3.8 is of some interest,
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as it also provides us with a description of these chain maps, i.e. of the boundary groups of
the (acyclic) Hom complex [X,Y ].

(ii) The short exact sequences in Theorem 3.8 are natural in both X and Y . Hence, if S and
T are two rings, X is a complex of (R,S)-bimodules and Y is a complex of (R, T )-bimodules,
then these short exact sequences are actually short exact sequences of (S, T )-bimodules. In
particular, if the ring R is commutative, then all Hom groups involved are R-modules and
these short exact sequences are short exact sequences of R-modules.

III. Ext-independence of infinite syzygies. We denote by S∞
proj(R) the class of those

R-modules that may be expressed as syzygies of acyclic complexes of projective modules.
This is a subclass of S∞

flat(R), which is closed under direct sums. We also consider the class
S∞

inj(R) consisting of the syzygies of the acyclic complexes of injective modules; this class is
closed under direct products.

We examine the condition appearing as assumption (iii) in Theorem 3.8. The proofs of the
following results are omitted, as these are completely analogous to the proofs of Lemma 2.1
(see also Remark 2.2), Proposition 2.3 and Lemma 2.4 respectively.

Lemma 3.10. Let X be an acyclic complex of projective R-modules and Y an acyclic complex
of injective R-modules. Then, the following conditions are equivalent:

(i) Ext1R(BiX,B0Y ) = 0 for all i,
(ii) ExtnR(BiX,B0Y ) = 0 for all n ≥ 1 and all i,
(i)’ Ext1R(B0X,BjY ) = 0 for all j,
(ii)’ ExtnR(B0X,BjY ) = 0 for all n ≥ 1 and all j,
(iii) Ext1R(BiX,BjY ) = 0 for all i, j and
(iv) ExtnR(BiX,BjY ) = 0 for all n ≥ 1 and all i, j. �

Proposition 3.11. The following two conditions are equivalent for a pair of modules (M,N),
where M ∈ S∞

proj(R) and N ∈ S∞
inj(R):

(i) There exists an acyclic complex of projective R-modules X with M = B0X and an
acyclic complex of injective R-modules Y with N = B0Y , such that the equivalent conditions
of Lemma 3.10 are satisfied for X and Y .

(ii) If X is any acyclic complex of projective R-modules with M = B0X and Y is any acyclic
complex of injective R-modules with N = B0Y , then the equivalent conditions of Lemma 3.10
are satisfied for X and Y .
If these conditions are satisfied, we say that the modules M and N are Ext-independent. �

In the special case where M is Gorenstein projective or N is Gorenstein injective [7], Ext-

independence is equivalent to the vanishing of the Tate cohomology groups Êxt
∗
R(M,N).

Indeed, if we assume that M is Gorenstein projective and X is a totally acyclic complex of
projective modules admitting M as a kernel, then the homology of the complex [X,N ] is the

Tate cohomology Êxt
∗
R(M,N); cf. [6, §4.1].

For any module M ∈ S∞
proj(R) we may consider the class M�, consisting of those modules

N ∈ S∞
inj(R), which are Ext-independent to M . If X is an acyclic complex of projective

R-modules, such that M = B0X, then M� = {N ∈ S∞
inj(R) : the complex [X,N ] is acyclic};

this follows from condition (i) in Lemma 3.10.

Lemma 3.12. Let M be an R-module in S∞
proj(R) and consider the class M� defined above.

Then:
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(i) If (Ni)i is a family of modules in M�, then
∏

i Ni ∈M�.
(ii) If 0 −→ N ′ −→ N −→ N ′′ −→ 0 is a short exact sequence of modules in S∞

inj(R) and

two of these modules are contained in M�, then so is the third. �

For any module N ∈ S∞
inj(R) we may also consider the class �N , consisting of those modules

M ∈ S∞
proj(R), which are Ext-independent to N . If Y is an acyclic complex of injective R-

modules, such that N = B0Y , then �N consists of those modules M ∈ S∞
proj(R), which are

such that the complex [M,Y ] is acyclic; this follows from condition (i)’ in Lemma 3.10. The
class �N is closed under direct sums and has the 2-out-of-3 property for short exact sequences
in S∞

proj(R).

IV. The pinched Hom complex. Let X,Y be two chain complexes of R-modules. We
recall the definition of the pinched Hom complex [X,Y ]◃▹, as defined in [6]. It is the total
complex associated with the bicomplex of abelian groups pictured below

(4)

...
...

↓ ↓
[X−1, Y2] ←− [X−2, Y2] ←− · · ·
↓ ↓

· · · ←− [X1, Y0] ←− [X0, Y0]
d←− [X−1, Y1] ←− [X−2, Y1] ←− · · ·

↓ ↓
· · · ←− [X1, Y−1] ←− [X0, Y−1]

↓ ↓
...

...

Here, the abelian group [X−i, Yj] is located in bidegree (i, j) (resp. in bidegree (i, j − 1))
if i, j ≤ 0 (resp. if i, j > 0). The map d is induced by the differentials X0 −→ X−1 and
Y1 −→ Y0, the other horizontal differentials are induced by the differentials of X and the
vertical differentials are, up to a sign, the maps induced by the differentials of Y . (The
signs are chosen so that all squares anti-commute.) Let X<0 ⊆ X (resp. Y≤0 ⊆ Y ) be the
subcomplex consisting ofXi (resp. Yi) in degrees i < 0 (resp. i ≤ 0) and 0 in non-negative (resp.
positive) degrees. Then, setting the differential d aside, the pinched Hom complex consists of
[X/X<0, Y≤0] in non-positive degrees (this is the total complex of the third quadrant part of
the bicomplex (4) above) and the suspension Σ−1[X<0, Y/Y≤0] in positive degrees (this is the
total complex of the first quadrant part of the bicomplex (4) above).

Proposition 3.13. Let X,Y be two acyclic complexes of R-modules, such that X consists of
projective modules and Y consists of injective modules. We assume that X and Y satisfy the
equivalent conditions of Lemma 3.10. Then, the pinched Hom complex [X,Y ]◃▹ is acyclic and
B0([X,Y ]◃▹])= [B−1X,B0Y ].

Proof. (cf. [6, Theorem 4.7]) Let M = B−1X and factor the differential X0 −→ X−1 as the

composition X0
ϵ−→ M

η−→ X−1, where η is the inclusion. We also let N = B0Y and factor

the differential Y1 −→ Y0 as the composition Y1
ϵ′−→ N

η′−→ Y0, where η′ is the inclusion.

Then, the additive map d in (4) is the composition [X−1, Y1]
[η,ϵ′]−→ [M,N ]

[ϵ,η′]−→ [X0, Y0]. The
proof follows from the following four assertions:
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(i) There is an exact sequence

0 −→ [M,N ]
[ϵ,η′]−→ [X0, Y0] −→ [X1, Y0]⊕ [X0, Y−1],

where the unlabelled arrow is the differential of the complex [X,Y ]◃▹.
(ii) There is an exact sequence

[X−1, Y2]⊕ [X−2, Y1] −→ [X−1, Y1]
[η,ϵ′]−→ [M,N ] −→ 0,

where the unlabelled arrow is the differential of the complex [X,Y ]◃▹.
(iii) The complex [X,Y ]◃▹ is acyclic in negative degrees.
(iv) The complex [X,Y ]◃▹ is acyclic in degrees > 1.

The proof of these assertions is omitted; it is completely analogous to the proof of the corre-
sponding assertions in the proof of Proposition 2.6. �
Corollary 3.14. Let R be a commutative ring and consider two modules M ∈ S∞

proj(R) and
N ∈ S∞

inj(R), which are Ext-independent. Then, [M,N ] ∈ S∞
inj(R).

Proof. We consider an acyclic complex of projective R-modules X with M = B−1X and
an acyclic complex of injective R-modules Y with N = B0Y . Since R is commutative, the
pinched Hom complex [X,Y ]◃▹ is clearly a complex of R-modules. In fact, since the R-module
[P, I] is injective whenever P is a projective and I is an injective R-module, whereas the class
of injective R-modules is closed under finite direct sums, it follows that [X,Y ]◃▹ is a complex
of injective R-modules. Then, Proposition 3.13 implies that [M,N ] = B0([X,Y ]◃▹) ∈ S∞

inj(R),
as needed. �

References

[1] Avramov, L., Foxby, H.-B.: Homological dimensions of unbounded complexes. J. Pure Appl. Algebra 71,
129-155 (1991)

[2] Bazzoni, S., Cortés-Izurdiaga, M., Estrada, S.: Periodic modules and acyclic complexes. Algebr. Repre-
sent. Theory 23, 1861-1883 (2020)

[3] Benson, D.J., Goodearl, K.R.: Periodic flat modules, and flat modules for finite groups. Pacific J. Math.
bf 196, 45-67 (2000)

[4] Cartan, H., Eilenberg, S.: Homological algebra, Princeton Landmarks in Mathematics, Princeton Uni-
versity Press, Princeton, NJ, 1999, With an appendix by David A. Buchsbaum, Reprint of the 1956
original

[5] Christensen, L.W., Holm, H.: The direct limit closure of perfect complexes. J. Pure Appl. Algebra 219,
449-463 (2015)

[6] Christensen, L.W., Jorgensen, D.A.: Tate (co)homology via pinched complexes. Trans. Amer. Math. Soc.
366, 667-689 (2014)

[7] Enochs, E.E., Jenda, O.M.G.: Gorenstein injective and projective modules. Math. Z. 220, 611-633 (1995)
[8] Enochs, E.E., Jenda, O.M.G., Torrecillas, B.: Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue

Bannian Kan 10, 1-9 (1993)
[9] Gillespie, J.: The flat model structure on Ch(R). Trans. Amer. Math. Soc. 356, 3369-3390 (2004)
[10] Neeman, A.: The homotopy category of flat modules, and Grothendieck duality. Invent. Math. 174,

255-308 (2008)
[11] Spaltenstein, N.: Resolutions of unbounded complexes. Compos. Math. 65, 121-154 (1988)
[12] Stovicek, J.: On purity and applications to coderived and singularity categories. arxiv:1412.1615

Department of Mathematics, University of Athens, Athens 15784, Greece

E-mail addresses: constchatz@math.uoa.gr and emmanoui@math.uoa.gr


